Soil Biology
Table of Contents
“The soil is the great connector of lives, the source and destination of all. It is the healer and restorer and resurrector, by which disease passes into health, age into youth, death into life. Without proper care for it we can have no community, because without proper care for it we can have no life.”
― Wendell Berry; Poet and Environmental Activist
Soil biology is the study of microbial and faunal activity and ecology in soil. Soil life, soil biota, soil fauna, or edaphon is a collective term that encompasses all organisms that spend a significant portion of their life cycle within a soil profile, or at the soil-litter interface. These organisms include earthworms, nematodes, protozoa, fungi, bacteria, different arthropods, as well as some reptiles (such as snakes), and species of burrowing mammals like gophers, moles and prairie dogs. Soil biology plays a vital role in determining many soil characteristics. The decomposition of organic matter by soil organisms has an immense influence on soil fertility, plant growth, soil structure, and carbon storage. As a relatively new science, much remains unknown about soil biology and its effect on soil ecosystems.
The soil is home to a large proportion of the world’s biodiversity. The links between soil organisms and soil functions are observed to be incredibly complex. The interconnectedness and complexity of this soil ‘food web’ means any appraisal of soil function must necessarily take into account interactions with the living communities that exist within the soil. We know that soil organisms break down organic matter, making nutrients available for uptake by plants and other organisms. The nutrients stored in the bodies of soil organisms prevent nutrient loss by leaching. Microbial exudates act to maintain soil structure, and earthworms are important in bioturbation. However, we find that we don’t understand critical aspects about how these populations function and interact. The discovery of glomalin in 1995 indicates that we lack the knowledge to correctly answer some of the most basic questions about the biogeochemical cycle in soils. There is much work ahead to gain a better understanding of the ecological role of soil biological components in the biosphere.
In balanced soil, plants grow in an active and steady environment. The mineral content of the soil and its structure are important for their well-being, but it is the life in the earth that powers its cycles and provides its fertility. Without the activities of soil organisms, organic materials would accumulate and litter the soil surface, and there would be no food for plants. The soil biota includes:
- Megafauna: size range – 20 mm upward, e.g. moles, rabbits, and rodents.
- Macrofauna: size range – 2 to 20 mm, e.g. woodlice, earthworms, beetles, centipedes, slugs, snails, ants, and harvestmen.
- Mesofauna: size range – 100 micrometres to 2 mm, e.g. tardigrades, mites and springtails.
- Microfauna and Microflora: size range – 1 to 100 micrometres, e.g. yeasts, bacteria (commonly actinobacteria), fungi, protozoa, roundworms, and rotifers.
Of these, bacteria and fungi play key roles in maintaining a healthy soil. They act as decomposers that break down organic materials to produce detritus and other breakdown products. Soil detritivores, like earthworms, ingest detritus and decompose it. Saprotrophs, well represented by fungi and bacteria, extract soluble nutrients from delitro. The ants (macrofaunas) help by breaking down in the same way but they also provide the motion part as they move in their armies. Also the rodents, wood-eaters help the soil to be more absorbent.
Soil biology involves work in the following areas:
- Modelling of biological processes and population dynamics
- Soil biology, physics and chemistry: occurrence of physicochemical parameters and surface properties on biological processes and population behavior
- Population biology and molecular ecology: methodological development and contribution to study microbial and faunal populations; diversity and population dynamics; genetic transfers, influence of environmental factors
- Community ecology and functioning processes: interactions between organisms and mineral or organic compounds; involvement of such interactions in soil pathogenicity; transformation of mineral and organic compounds, cycling of elements; soil structuration
Complementary disciplinary approaches are necessarily utilized which involve molecular biology, genetics, ecophysiology, biogeography, ecology, soil processes, organic matter, nutrient dynamics[1] and landscape ecology.
https://en.wikipedia.org/wiki/Soil_biology